

SQL Injection
Are Your Web Applications Vulnerable?

FJAC
 CLM Software www.clm.com.br tel 11-505-4733

www.clm.com.br

Table of Contents

1.1. Overview 3

1.2. Background 3

1.3. Character encoding 3

2.1. Comprehensive testing 4

2.2. Testing procedure 4

2.3. Evaluating results 5

3.1. Authorization bypass 6

3.2. SELECT 7
3.2.1. Direct vs. Quoted .. 7
3.2.2. Basic UNION... 8
3.2.3. Query enumeration with syntax errors... 10
3.2.4. Parenthesis... 10
3.2.5. LIKE queries ... 12
3.2.6. Dead Ends... 13
3.2.7. Column number mismatch .. 13
3.2.8. Additional WHERE columns ... 18
3.2.9. Table and field name enumeration.. 19
3.2.10. Single record cycling 21

3.3. INSERT 24

3.4. SQL Server Stored Procedures 25

4.1. Data sanitization 29

4.2. Secure SQL web application coding 29

5.1. MS SQL Server 30

5.2. MS Access Server 30

5.3. Oracle 30

CLM & SPI Dynamics 31

 1. Overview and Introduction

1. Web Applications and SQLinjection

1.1. Overview
 SQL injection is a technique for exploiting web applications that use
client-supplied data in SQL queries without stripping potentially harmful
characters first. Despite being remarkably simple to protect against, there
is an astonishing number of production systems connected to the Internet
that are vulnerable to this type of attack. The objective of this paper is to
educate the professional security community on the techniques that can be
used to take advantage of a web application that is vulnerable to SQL
injection, and to make clear the correct mechanisms that should be put in
place to protect against SQL injection and input validation problems in
general.

1.2. Background
 Before reading this, you should have a basic understanding of how
databases work and how SQL is used to access them. I recommend reading
eXtropia.com’s “Introduction to Databases for Web Developers” at
http://www.extropia.com/tutorials/sql/toc.html.

1.3. Character encoding
 In most web browsers, punctuation characters and many other
symbols will need to be URL encoded before being used in a request in
order to be interpreted properly. In this paper I have used regular ASCII
characters in the examples and screenshots in order to maintain maximum
readability. In practice, though, you will need to substitute %25 for percent
sign, %2B for plus sign, etc. in the HTTP request statement.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 3

http://www.extropia.com/tutorials/sql/toc.html

2. Testing for vulnerability

2.1. Comprehensive testing
Thoroughly checking a web application for SQL injection vulnerability

takes more effort than one might guess. Sure, it's nice when you throw a
single quote into the first argument of a script and the server returns a nice
blank, white screen with nothing but an ODBC error on it, but such is not
always the case. It is very easy to overlook a perfectly vulnerable script if
you don't pay attention to details.

Every parameter of every script on the server should always be checked.
Developers and development teams can be awfully inconsistent. The
programmer who designed Script A might have had nothing to do with the
development of Script B, so where one might be immune to SQL injection,
the other might be ripe for abuse. In fact, the programmer who worked on
Function A in Script A might have nothing to do with Function B in Script A,
so while one parameter in Script A might be vulnerable, another might not.
Even if a whole web application is conceived, designed, coded and tested by
one single, solitary programmer, there might be only one vulnerable
parameter in one script out of thousands of other parameters in millions of
other scripts, because for whatever reason, that developer forgot to sanitize
the data in that one place and that one place only. You never can be sure.
Test everything.

2.2. Testing procedure
Replace the argument of each parameter with a single quote and an SQL

keyword ("' WHERE", for example). Each parameter needs to be tested
individually. Not only that, but when testing each parameter, leave all of
the other parameters unchanged, with valid data as their arguments. It can
be tempting to just delete all of the stuff that you're not working with in
order to make things look simpler, particularly with applications that have
parameter lines that go into many thousands of characters. Leaving out
parameters or giving other parameters bad arguments while you're testing
another for SQL injection can break the application in other ways that
prevent you from determining whether or not SQL injection is possible. For
instance, let's say that this is a completely valid, unaltered parameter line:

ContactName=Maria%20Anders&CompanyName=Alfreds%20Futterkiste
 And this parameter line gives you an ODBC error:
ContactName=Maria%20Anders&CompanyName='%20OR

Where checking with this line:
CompanyName='

Might just give you an error telling you that you that you need to
specify a ContactName value. This line:
ContactName=BadContactName&CompanyName='

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 4

Might give you the same page as the request that didn't specify
ContactName at all. Or, it might give you the site’s default homepage. Or,
perhaps when it couldn't find the specified ContactName the application
figured that there was no point in looking at CompanyName, so it didn't even
pass the argument of that parameter into an SQL statement at all. Or, it
might give you something completely different. So, when testing for SQL
injection, always use the full parameter line, giving every argument except
the one that you are testing a legitimate value.

2.3. Evaluating results
If you get a database server error message of some kind back, injection

was definitely successful. However, the database error messages aren't
always obvious. Again, developers do some strange things, so you should
look in every possible place for evidence of successful injection. The first
thing you should do is search through the entire source of the returned
page for phrases like "ODBC", "SQL Server", "Syntax", etc. More details on
the nature of the error can be in hidden input, comments, etc. Check the
headers. I have seen web applications on production systems that give you
an error message with absolutely no information in the body of the HTTP
response, but that have the database error message in a header. Many
web applications have these kinds of features built into them for debugging
and QA purposes, and then forget to remove or disable them before
release.

Not only should you look on the immediately returned page, but in
linked pages as well. During a recent pen-test, I saw a web application that
returned a generic error message page in response to an SQL injection
attack. Clicking on a stop sign image next to the error that was linked to
another page gave the full SQL Server error message.

Another thing to watch out for is a 302 page redirect. You may be
whisked away from the database error message page before you even get a
chance to notice it.

Please note that SQL injection may be successful even if you do get an
ODBC error messages back. Lots of the time you get back a properly
formatted, seemingly generic error message page telling you that there was
"an internal server error" or a "problem processing your request."

Some web applications are built so that in the event of an error of any
kind, the client is returned to the site’s main page. If you get a 500 Error
page back, chances are that injection is occurring. Many sites have a
default 500 Internal Server Error page that claims that the server is down
for maintenance, or that politely asks the user to email their request to
their support staff. It can be possible to take advantage of these sites using
stored procedure techniques, which are discussed later.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 5

 3. Attacks

3.1. Authorization bypass
 The simplest SQL injection technique is bypassing form-based logins.
Let's say that the web application’s code is like this:

SQLQuery = "SELECT Username FROM Users WHERE Username = '" &
strUsername & "' AND Password = '" & strPassword & "'"
strAuthCheck = GetQueryResult(SQLQuery)
If strAuthCheck = "" Then
 boolAuthenticated = False
Else
 boolAuthenticated = True
End If

 Here's what happens when a user submits a username and password.
The query will go through the Users table to see if there is a row where the
username and password in the row match those supplied by the user. If
such a row is found, the username is stored in the variable strAuthCheck,
which indicates that the user should be authenticated. If there is no row
that the user-supplied data matches, strAuthCheck will be empty and the
user will not be authenticated.
 If strUsername and strPassword can contain any characters that you
want, you can modify the actual SQL query structure so that a valid name
will be returned by the query even if you do not know a valid username or a
password. How does this work? Let's say a user fills out the login form like
this:

Login: ' OR ''='
Password: ' OR ''='

 This will give SQLQuery the following value:

SELECT Username FROM Users WHERE Username = '' OR ''='' AND
Password = '' OR ''=''

 Instead of comparing the user-supplied data with that present in the
Users table, the query compares '' (nothing) to '' (nothing), which, of
course, will always return true. (Please note that nothing is different from
null.) Since all of the qualifying conditions in the WHERE clause are now met,
the username from the first row in the table that is searched will be
selected. This username will subsequently be passed to strAuthCheck,
which will ensure our validation. It is also possible to use another row’s
data, using single result cycling techniques, which will be discussed later.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 6

3.2. SELECT
For other situations, you must reverse-engineer several parts of the

vulnerable web application's SQL query from the returned error messages.
In order to do this, you must know what the error messages that you are
presented with mean and how to modify your injection string in order to
defeat them.

3.2.1. Direct vs. Quoted

The first error that you are normally confronted with is the syntax
error. A syntax error indicates that the query does not conform to the
proper structure of an SQL query. The first thing that you need to figure
out is whether injection is possible without escaping quotation.

In a direct injection, whatever argument you submit will be used in the
SQL query without any modification. Try taking the parameter's legitimate
value and appending a space and the word "OR" to it. If that generates an
error, direct injection is possible. Direct values can be either numeric
values used in WHERE statements, like this:
SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE Employee = " & intEmployeeID

Or the argument of an SQL keyword, such as table or column name,

like this:
SQLString = "SELECT FirstName, LastName, Title FROM Employees
ORDER BY " & strColumn

 All other instances are quoted injection vulnerabilities. In a quoted
injection, whatever argument you submit has a quote prepended and
appended to it by the application, like this:
SQLString = "SELECT FirstName, LastName, Title FROM
Employees WHERE EmployeeID = '" & strCity & "'"

 In order to “break out” of the quotes and manipulate the query while
maintaining valid syntax, your injection string must contain a single quote
before you use an SQL keyword, and end in a WHERE statement that needs
a quote appended to it. And now to address the problem of “cheating”.
Yes, SQL Server will ignore everything after a “;--”, but it's the only server
that does that. It's better to learn how to do this the "hard way" so that
you'll know how to do this if you run into an Oracle, DB/2, MySQL or any
other kind of database server.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 7

3.2.2. Basic UNION

Figure 1: Syntax breaking on direct injection

Figure 2: Syntax breaking on a quoted injection

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 8

SELECT queries are used to retrieve information from a database. Most web
applications that use dynamic content of any kind will build pages using
information returned from SELECT queries. Most of the time, the part of the
query that you will be able to manipulate will be the WHERE clause. The way
to modify a query from within a WHERE clause to make it return records
other than those intended is to inject a UNION SELECT. A UNION SELECT
allows multiple SELECT queries to be specified in one statement. They look
something like this:

SELECT CompanyName FROM Shippers WHERE 1 = 1 UNION ALL SELECT
CompanyName FROM Customers WHERE 1 = 1

This will return the recordsets from the first query and the second query
together. The ALL is necessary to escape certain kinds of SELECT DISTINCT
statements and doesn't interfere otherwise, so it’s best to always use it. It
is necessary to make sure that the first query, the one that the web
application’s developer intended to be executed, returns no records. This is
not difficult. Let's say you're working on a script with the following code:
SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE City = '" & strCity & "'"

And use this injection string:
' UNION ALL SELECT OtherField FROM OtherTable WHERE ''='

This will result in the following query being sent to the database server:

SELECT FirstName, LastName, Title FROM Employees WHERE City = ''
UNION ALL SELECT OtherField FROM OtherTable WHERE ''=''

 Here's what will happen: the database engine goes through the
Employees table, looking for a row where City is set to nothing. Since it will
not find a row where City is nothing, no records will be returned. The only
records that will be returned will be from the injected query. In some
cases, using nothing will not work because there are entries in the table
where nothing is used, or because specifying nothing makes the web
application do something else. All you have to do is specify a value that
does not occur in the table. Just put something that looks out of the
ordinary as best you can tell by looking at the legitimate values. When a
number is expected, zero and negative numbers often work well. For a text
argument, simply use a string such as "NoSuchRecord", "NotInTable",
or the ever-popular "sjdhalksjhdlka". Just as long as it won't return
records.

It would be nice if all of the queries used in web applications were as
simple as the ones above. However, this is not the case. Depending on the
function of the intended query as well as the habits of the developer, you
may have a tough time breaking the syntax error.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 9

3.2.3. Query enumeration with syntax errors

Some database servers return the portion of the query containing the
syntax error in their error messages. In these cases you can “bully”
fragments of the SQL query from the server by deliberately creating syntax
errors. Depending on the way that the query is designed, some strings will
return useful information and others will not. Here's my list of suggested
attack strings:

'
BadValue'
'BadValue
' OR '
' OR
;
9,9,9

Often several of those strings will return the same or no information, but

there are instances where only one of them will give you helpful
information. Again, always be thorough. Try all of them.

3.2.4. Parenthesis

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 10

Figure 3: Parenthesis breaking on a quoted injection

If the syntax error contains a parenthesis in the cited string (such as the
SQL Server message used in the example below) or you get a message that
explicitly complains about missing parentheses (Oracle does this), add a
parenthesis to the bad value part of your injection string, and one to the
WHERE clause. In some cases, you may need to use two or more
parentheses. Here’s the code used in parenthesis.asp:

mySQL="SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = '" & strCity & "')"

So, when you inject the value “') UNION SELECT OtherField FROM
OtherTable WHERE (''='”, the following query will be sent to the server:

SELECT LastName, FirstName, Title, Notes, Extension FROM
Employees WHERE (City = '') UNION SELECT OtherField From
OtherTable WHERE (''='')

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 11

3.2.5. LIKE queries

Figure 4: LIKE breaking on a quoted injection

Another common debacle is being trapped in a LIKE clause. Seeing the
LIKE keyword or percent signs cited in an error message are indications of
this situation. Most search functions use SQL queries with LIKE clauses,
such as the following:

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 12

SQLString = "SELECT FirstName, LastName, Title FROM Employees
WHERE LastName LIKE '%" & strLastNameSearch & "%'"

The percent signs are wildcards, so in this case, the WHERE clause would
return true in any case where strLastNameSearch appears anywhere in
LastName. In order to stop the intended query from returning records, your
bad value must be something that none of the values in the LastName. field
contain. The string that the web application appends to the user input,
usually a percent sign and single quote (and often parenthesis as well),
needs to be mirrored in the WHERE clause of the injection string. Also,
using nothing as your bad values will make the LIKE argument “%%”,
resulting in a full wildcard, which returns all records. The second
screenshot shows a working injection query for the above code.

3.2.6. Dead Ends

There are situations that you may not be able to defeat without an
enormous amount of effort or even at all. Occasionally you'll find yourself
in a query that you just can't seem to break. No matter what you do, you
get error after error after error. Lots of the time this is because you're
trapped inside a function that's inside a WHERE clause that's in a subselect
which is an argument of another function whose output is having string
manipulations performed on it and then used in a LIKE clause which is in a
subselect somewhere else. Or something like that. Not even SQL Server's
“;--” can rescue you in those cases.

3.2.7. Column number mismatch

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 13

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 14

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 15

Figure 5: Column number matching

 If you can get around the syntax error, the hardest part is over. The
next error message you get will probably complain about a bad table name.
Choose a valid system table name from the appendix that corresponds to
the database server that you're up against.

You will then most likely be confronted with an error message that
complains about the difference in number of fields in the SELECT and UNION

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 16

SELECT queries. You need to find out how many columns are requested in
the legitimate query. Let's say that this is the code in the web application
that you’re attacking:

SQLString = SELECT FirstName, LastName, EmployeeID FROM
Employees WHERE City = '" & strCity "'"

 The legitimate SELECT and the injected UNION SELECT need to have an
equal number of columns in their WHERE clauses. In this case, they both
need three. Not only that, but their column types need to match as well. If
FirstName is a string, then the corresponding field in your injection string
needs to be a string as well. Some servers, such as Oracle, are very strict
about this. Others are more lenient and allow you to use any data type that
can do implicit conversion to the correct data type. For example, in SQL
Server, putting numeric data in a varchar's place is okay, because numbers
can be converted to strings implicitly. Putting text in a smallint column,
however, is illegal because text cannot be converted to an integer. Because
numeric types often convert to strings easily but not vice versa, use
numeric values by default.
 To determine the number of columns you need to match, keep
adding values to the UNION SELECT clause until you stop getting a column
number mismatch error. If a data type mismatch error is encountered,
change the type of data of the column you entered from a number to a
literal. Sometimes you will get a conversion error as soon as you submit an
incorrect data type. Other times, you will only get the conversion message
once you've matched the correct number of columns, leaving you to figure
out which columns are the ones that are causing the error. When the latter
is the case, matching the value types can take a very long time, since the
number of possible combinations is two raised to number of columns in the
query. Oh, did I mention that 40 column SELECT are not terribly
uncommon?
 If all goes well, you should get back a page with the same formatting
and structure as a legitimate one. Wherever dynamic content is used you
should have the results of your injection query.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 17

3.2.8. Additional WHERE columns

Figure 6: Additional WHERE column breaking

 Sometimes your problem may be additional WHERE conditions that are
added to the query after your injection string. Take this line of code for
instance:

SQLString = "SELECT FirstName, LastName, Title FROM Employees

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 18

WHERE City = '" & strCity & "' AND Country = 'USA'"

Trying to deal with this query like a simple direct injection would yield a
query like this:

SELECT FirstName, LastName, Title FROM Employees WHERE City =
'NoSuchCity' UNION ALL SELECT OtherField FROM OtherTable WHERE
1=1 AND Country = 'USA'

Which yields an error message such as:

[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column
name 'Country'.

The problem here is that your injected query does not have a table in

the FROM clause that contains a column named 'Country' in it. There are
two ways of solving this problem: cheat and use the “;--” terminator if
you're using SQL Server, or guess the name of the table that the offending
column is in and add it to your FROM. Use the attack queries listed in
section 3.2.3 to try and get as much of the legitimate query back as
possible.

Table and field name enumeration

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 19

 Figure 7: Table and field name enumeration

Now that you have injection working, you have to decide what tables and
fields you want to retrieve information from. With SQL Server, you can
easily get all of the table and column names in the database. With Oracle
and Access you may or may not be able to do this, depending on the
privileges of the account that the web application is accessing the database
with. The key is to be able to access the system tables that contain the
table and column names. In SQL Server, they are called 'sysobjects' and
'syscolumns', respectively. (There is a list of system tables for other
database servers at the end of this document. You will also need to know
relevant column names in those tables). In these tables there will be
listings of all of the tables and columns in the database. To get a list of
user tables in SQL Server, use the following injection query, modified to fit
whatever circumstances you find yourself in, of course:

SELECT name FROM sysobjects WHERE xtype = 'U'

 This will return the names of all of the user-defined (that's what
xtype = 'U' does) tables in the database. Once you find one that looks
interesting (we'll use Orders), you can get the names of the fields in that
table with an injection query similar to this

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 20

SELECT name FROM syscolumns WHERE id = (SELECT id FROM
sysobjects WHERE name = 'Orders')

3.2.10. Single record cycling

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 21

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 22

Figure 8: Single record cycling

If possible, use an application that is designed to return as many results
as possible. A search tool is ideal because they are made to return results
from many different rows at once. Some applications are designed to use
only one recordset in their output at a time, and ignore the rest. If you're
stuck with a single product display application, it's okay. You can
manipulate your injection query to allow you to slowly, but surely, get your
desired information back in full. This is accomplished by adding qualifiers to
the WHERE clause that prevent certain rows’ information from being
selected. Let's say you started with this injection string:

' UNION ALL SELECT name, FieldTwo, FieldThree FROM TableOne
WHERE ''='

 And you got the first values in FieldOne, FieldTwo and FieldThree
injected into your document. Let's say the values of FieldOne, FieldTwo
and FieldThree were "Alpha", "Beta" and "Delta", respectively. Your
second injection string would be:

 ' UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM
TableOne WHERE FieldOne NOT IN ('Alpha') AND FieldTwo NOT IN

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 23

('Beta') AND FieldThree NOT IN ('Delta') AND ''='

 The NOT IN VALUES clause makes sure that the information that you
already know will not be returned again, so the next row in the table will be
used instead. Let’s say these values were "AlphaAlpha", "BetaBeta" and
"DeltaDelta"...

' UNION ALL SELECT FieldOne, FieldTwo, FieldThree FROM TableOne
WHERE FieldOne NOT IN ('Alpha', 'AlphaAlpha') AND FieldTwo NOT
IN ('Beta', 'BetaBeta') AND FieldThree NOT IN ('Delta',
'DeltaDelta') AND ''='

 This will prevent both the first and second sets of values you know
from being returned. You just keep adding arguments to VALUES until there
are none left to return. Yes, this makes for some rather large and
cumbersome queries while going through a table with many rows, but it's
the best method that there is.

3.3. INSERT

3.3.1. Insert basics
 The INSERT keyword is used to add information to the database.
Common uses of INSERTs in web applications include user registrations,
bulletin boards, adding items to shopping carts, etc. Checking for
vulnerabilities with INSERT statements is the same as doing it with WHEREs.
You may not want to try to use INSERTs if avoiding detection is an important
issue. INSERT injection attempts often result in rows in the database that
are flooded with single quotes and SQL keywords from the reverse-
engineering process. Depending on how watchful the administrator is and
what is being done with the information in that database, it may be noticed.
Having said that, here's how INSERT injection differs from SELECT injection.
 Let's say you're on a site that allows user registration of some kind.
It provides a form where you enter your name, address, phone number,
etc. After you've submitted the form, you can go to a page where it
displays this information and gives you an option to edit it. This is what you
want. In order to take advantage of an INSERT vulnerability, you must be
able to view the information that you've submitted. It doesn't matter where
it is. Maybe when you log in it greets you with the value it has stored for
your name in the database. Maybe they send you spam mail with the name
value in it. Who knows. Find a way to view at least some of the
information you've entered.

3.3.2. Injecting subselects
 An INSERT query looks something like this:
INSERT INTO TableName VALUES ('Value One', 'Value Two', 'Value
Three')

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 24

You want to be able to manipulate the arguments in the VALUES clause to
make them retrieve other data. We can do this using subselects. Let's say
the code looks like this:

SQLString = "INSERT INTO TableName VALUES ('" & strValueOne &
"', '" & strValueTwo & "', '" & strValueThree & "')"

And we fill out the form like this:

Name: ' + (SELECT TOP 1 FieldName FROM TableName) + '
Email: blah@blah.com
Phone: 333-333-3333

Making the SQL statement look like this:

INSERT INTO TableName VALUES ('' + (SELECT TOP 1 FieldName FROM
TableName) + '', 'blah@blah.com', '333-333-3333')

 When you go to the preferences page and view your user's
information, you'll see the first value in FieldName where the user's name
would normally be. Unless you use TOP 1 in your subselect, you'll get back
an error message saying that the subselect returned too many records. You
can go through all of the rows in the table using NOT IN () the same way it
is used in single record cycling.

3.4. SQL Server Stored Procedures

3.4.1. Stored procedure basics
 An out-of-the-box install of Microsoft SQL Server has over one
thousand stored procedures. If you can get SQL injection working on a web
application that uses SQL Server as it's backend, you can use these stored
procedures to pull off some remarkable feats. I will here discuss a few
procedures of particular interest. Depending on the permissions of the web
application's database user, some, all or none of these may work. The first
thing you should know about stored procedure injection is that there is a
good chance that you will not see the stored procedure's output in the same
way you get values back with regular injection. Depending on what you're
trying to accomplish, you may not need to get data back at all. You can
find other means of getting your data returned to you.
 Procedure injection is much easier than regular query injection.
Procedure injection into a quoted vulnerability should look something like
this:
simplequoted.asp?city=seattle';EXEC master.dbo.xp_cmdshell
'cmd.exe dir c:

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 25

Notice how a valid argument is supplied at the beginning and followed by a
quote and the final argument to the stored procedure has no closing quote.
This will satisfy the syntax requirements inherent in most quoted
vulnerabilities. You may also have to deal with parentheses, additional
WHERE statements, etc., but after that, there's no column matching or data
types to worry about. This makes it possible to export vulnerability in the
same way that you would with applications that do not return error
messages. On to a couple of my favorite stored procedures.

3.4.2. xp_cmdshell

xp_cmdshell {'command_string'} [, no_output]

master.dbo.xp_cmdshell is the holy grail of stored procedures. It takes a
single argument, which is the command that you want to be executed at
SQL Server's user level. The problem? It's not likely to be available unless
the SQL Server user that the web application is using is the “sa”.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 26

3.4.2. sp_makewebtask

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 27

Figure 9: Using sp_makewebtask

sp_makewebtask [@outputfile =] 'outputfile', [@query =] 'query'

 Another favorite of mine is master.dbo.sp_makewebtask. As you
can see, its arguments are an output file location and an SQL statement.
sp_makewebtask takes a query and builds a webpage containing its output.
Note that you can use a UNC pathname as an output location. This means
that the output file can be placed on any system connected to the Internet
that has a publicly writable SMB share on it. (The SMB request must
generate no challenge for authentication at all). If there is a firewall
restricting the server's access to the Internet, try making the output file on
the website itself. (You'll need to either know or guess the webroot
directory). Also be aware that the query argument can be any valid T-SQL
statement, including execution of other stored procedures. Making "EXEC
xp_cmdshell 'dir c:'" the @query argument will give you the output of
"dir c:" in the webpage. When nesting quotes, remember to alternate
single and double quotes.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 28

4. Solutions

4.1. Data sanitization
All client-supplied data needs to be cleansed of any characters or strings

that could possibly be used maliciously. This should be done for all
applications, not just those that use SQL queries. Stripping quotes or
putting backslashes in front of them is nowhere near enough. The best way
to filter your data is with a default-deny regular expression. Make it so that
you only include that type of characters that you want. For instance, the
following regexp will return only letters and numbers:

s/[^0-9a-zA-Z]//g

Make your filter as specific as possible. Whenever possible use only
numbers. After that, numbers and letters only. If you need to include
symbols or punctuation of any kind, make absolutely sure to convert them
to HTML substitutes, such as ""e;" or ">". For instance, if the user
is submitting an email address, allow only "@", "_", "." and "-" in addition to
numbers and letters to be used, and only after those characters have been
converted to their html substitutes.

4.2. Secure SQL web application coding
There are also a few SQL injection specific rules. First, prepend and append
a quote to all user input. Even if the data is numeric. Next, limit the rights
of the database user that the web application uses. Don't give that user
access to all of the system stored procedures if that user only needs access
to a handful of user-defined ones.

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 29

5. Database server system tables

This section includes the names of system tables that are useful in SQL
injection. You can get listings of the columns in each of these tables by
searching for them on Google.

5.1. MS SQL Server
 sysobjects
 syscolumns

5.2. MS Access Server
 MSysACEs
 MSysObjects
 MSysQueries
 MSysRelationships

5.3. Oracle
SYS.USER_OBJECTS
SYS.TAB
SYS.USER_TABLES
SYS.USER_VIEWS
SYS.ALL_TABLES
SYS.USER_TAB_COLUMNS
SYS.USER_CONSTRAINTS
SYS.USER_TRIGGERS
SYS.USER_CATALOG

© 2002 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 30

Whether a security breac
that a hacker has laid ey
company, your sharehold

SPI Dynamics has found
proactive approach to ap
the application security p
these companies enjoy a

About SPI Dynamics

Founded in 2000 by a tea
Dynamics mission is to d
systematically detect, pre
vulnerabilities and intrusi
methodological approach
Based in Atlanta, Georgia
Dynamics products are u
financial management, m
government.

For further information p
 SPI Dynamics, Inc.
Distribuida no Brasil por
CLM Software
Av. Indianopolis, 888
São Paulo - SP
Tel. 11-5052-4733
www.clm.com.br
clm@clm.com.br

© 2002 SPI Dynamics, Inc. All Rig
6. The Business Case for Application
h is made public or confined internally, the fact
es on your sensitive data is of concern to your
ers, and most importantly, your customers.

that the majority of companies that take a
plication security, and that continuously engage in
rocess, are better protected. In the long run,
 higher ROI on their e-business ventures

, Inc.

m of accomplished Web security specialists, SPI
evelop security products and services that
vent, and communicate Web application
ons for any online business, and provide intelligent
es for resolution of discovered vulnerabilities.
, SPI Dynamics is a privately held company. SPI
sed in a wide variety of industries, including
anufacturing, healthcare, telecommunications, and

lease contact:

ht Reserved. No reproduction or redistribution without written permission.

Page 31

mailto:clm@clm.com.br
www.clm.com.br

	1.1. Overview
	1.2. Background
	1.3. Character encoding
	2.1. Comprehensive testing
	2.2. Testing procedure
	2.3. Evaluating results
	3.1. Authorization bypass
	3.2. SELECT
	3.2.1. Direct vs. Quoted
	3.2.2.Basic UNION
	3.2.3.Query enumeration with syntax errors
	3.2.4. Parenthesis
	3.2.5. LIKE queries
	3.2.6. Dead Ends
	3.2.7. Column number mismatch
	3.2.8. Additional WHERE columns
	Table and field name enumeration
	3.2.10.Single record cycling

	3.3. INSERT
	3.4. SQL Server Stored Procedures
	4.1. Data sanitization
	4.2. Secure SQL web application coding
	5.1. MS SQL Server
	5.2. MS Access Server
	5.3. Oracle
	About SPI Dynamics, Inc.

